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Abstract. The statistical properties of the total yield are analyzed for an assembly of gamblers in an
erratic period on the Budapest stock exchange. Random trading results in a log-normal limit distribution
of a surprisingly large width, while the simplest profit realizing strategy narrows down the peak around a
positive average value. The effect of transaction costs, the statistics of extremes, and patterns of successful
trading are also investigated. In spite of the very simple approach, we present strong indications that
large trading activity (e.g. day trading) is a rather risky way of capital investment. A comparison with
the yield distribution of 32 public investment funds in the given period does not reflect the presence of a
sophisticated investment strategy in the background.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 89.90.+n Other topics of general
interest to physicists

1 Introduction

Electronic trading on financial markets enormously in-
creased the efficiency of “money industry”, with huge
sums being earned and lost on computer networks on
all around the world. Prices and indices are recorded
several times a minute in liquid financial markets. The
large amount of available data and the complexity of
market structures has attracted considerable interest of
economists, mathematicians and also of physicists in re-
cent years [1,2]. Research has focused on detailed statisti-
cal analysis of price fluctuations [3–8], modeling markets
as complex interactive systems [9–14] and finding analo-
gies between economic and other phenomena such as tur-
bulence [15–17] or biological adaptation [18].

Considering the huge amount of data to be analyzed,
it is a common dream to produce “automated strate-
gies”, i.e. intelligent computer programs which are able
to evaluate quickly on-line information and to “propose”
trading activity. The application of such softwares is de-
sirable only if the risk is lower and, in optimal case,
the profit is higher than for the “pure human” decision
making process. While the literature on risk minimiza-
tion is huge [19], contributions on possible automatized
trading strategies are scarce. Recent counterexamples are
the works of Andersen, Gluzman and Sornette [20], and
Molgedey and Ebeling [21], where the identification of im-
portant patterns seems to be solved with significant pre-
dictive power. Nevertheless any attempt to find a trading
algorithm needs a measure for evaluating the success rate.
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Here we propose such a measure by analyzing the yield for
a large assembly of gamblers, i.e. “investors” without any
or a simple profit realizing strategy.

The analysis is based on a real time series of the in-
dex of the Budapest Stock Exchange (BSE), a typical ex-
ample for emerging markets, which was reestablished in
June 1990. Securities trading is entirely electronic. Since
1 of April 1997 the index (BUX) has been calculated and
recorded continuously with a time resolution of 5 s during
the main trading hours. In Figure 1 we show the evo-
lution of the BUX index as a function of trading time
in the period from 21 April 1997 to 17 December 1998.
(The trading time is calculated by eliminating the inter-
vals when the market is closed.) This period is chosen
for the analysis, because the first index value in the time
series coincides with the last one, therefore it can serve
as a simple reference for the following analysis. Detailed
statistical characterization of the BUX data is given in
references [22,23].

2 Random trading

Let us assume that an investor buys 100 BUX packages,
i.e. a portfolio consisting the BUX stocks with proper
weights, at the beginning of the period (21 April 1997),
when the index was 5803.90. If no transaction is per-
formed, the value of the packages is 100 × 5803.96 at the
end of the period under consideration (17 December 1998).
This means actually a net loss because of inflation, but for
the sake of simplicity we consider the result of such an in-
vestor as zero net yield. A gambler, i.e. a random trader
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Fig. 1. BUX values (a) and changes of the index (b) as a
function of trading time between 21.4.1997-17.12.1998 (487 643
data points). Arrows indicate two large financial crises: The
first is the South-East Asian (November 1997) and the sec-
ond is the Russian (August 1998) crisis. The solid line in (a)
indicates an overall decreasing linear trend in the given period.

makes transactions in this period without any strategy
and without any care of trends, other information, or even
the instantaneous value of the index. The transactions are
very simple:

1. The trader sells the packages at the instantaneous price
after a random waiting interval of∆t1, which has a uni-
form distribution between 0 and Θ measured in trading
time (5 s steps).

2. After a second random interval ∆t2, during which
nothing happens with the last amount of cash, the
trader buys as many BUX packages as he can afford
at the instantaneous price. The remainder is kept in
cash.

Random “trajectories” can be generated by iterating
the above steps until the end of the whole period, when the
result can be evaluated by accounting the total amount of
cash obtained by selling all the packages left. The only pa-
rameter of the model is Θ, which characterizes the trad-
ing activity, i.e. the average time between transactions.
No transaction fees, interest rate or other ingredients are
considered at the first step. We assume further that the in-
dividual (small volume) actions of such traders do not con-
tribute to the evolution of the index itself, and the market
is liquid enough to make possible the desired transactions
at the instantaneous prices.

In Figure 2 we show a few examples of random trad-
ing “trajectories” as a function of trading time. Different
random sequences can be realized simply by starting the
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Fig. 2. (a) Instantaneous value of stocks and cash as a func-
tion of trading time for different random traders. At the be-
ginning all had 100 BUX packages, the activity parameter
Θ = 1 000 for each case. The arrow at the right side indicates
the value of the package kept from the beginning without any
trading. (b) Number of BUX packages sold as a function of
trading time for the same random traders.

runs from different random number seeds. Note that the
final cash value at the end of the period may well exceed
the instantaneous BUX value indicated by an arrow in
Figure 2a. The activity parameter Θ = 1 000 means an
average waiting time of 2 500 s, which is equivalent with
2-3 transactions/day (the opening of BSE was restricted
to 100-110 minutes a day in the given period).

An interesting characteristics is the probability distri-
bution P (y) of the total yield y at the end of the gambling
period, which is defined as the final value of cash and
stocks divided by the value of the initial investment. We
determined this function from 50 000 different realizations
for several activity parametersΘ, see Figure 3. The results
show that the smooth distribution for “active” traders of
relatively low Θ values is strongly asymmetric, and can be
well fitted by a log-normal distribution

P (y) =
1√

2πyσy
exp

[
−1

2

(
ln(y)−m

σy

)2
]
, (1)

where y denotes the yield (final wealth divided by the ini-
tial one), m and σy are the parameters of the distribution.
Up to the value Θ ≈ 25 000, there is a very weak depen-
dence on Θ, the best fits give the values m = 0.006±0.001
and σx = 0.29±0.01. The most probable value yp, i.e. the
location of the peak is well below one: yp ≈ 0.93 ± 0.01.
The median ymed defined by

P (y < ymed) = P (y > ymed) =
1
2

(2)
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Fig. 3. (a) Normalized probability density distributions P (y)
of the total yield y for active traders of different Θ values.
The histograms were obtained from 50 000 random trajectories,
each. (b) The same as above, for less active traders of large Θ
values. Gray histogram shows the BUX distribution normalized
with the initial value.

is obtained by numerical integration: ymed ≈ 1.00± 0.008.
The average value for the yield y is

〈y〉 = exp

(
m+

σ2
y

2

)
≈ 1.05± 0.01. (3)

This average value completely agrees with the total wealth
of all traders normalized by the total initial investment
computed directly in the simulations.

These characteristics of the empirical distribution sup-
port the common opinion that gambling is a risky invest-
ment with 50% probability of win or loss, however in a
lucky situation one can double or triple the initial cap-
ital. (Actually, in our samples 0.8-1.2% of the gamblers
“earned” more than 100% of the initial investment.) Ac-
cording to the simple rules the total bankruptcy has a
vanishing probability, however the introduction of trans-
action costs changes this situation drastically, see below.

If the activity parameter Θ increases, the smooth log-
normal shape gradually changes to a strongly peaked, ir-
regular distribution. If Θ is comparable to the length of
the time series, only one or two transactions happen in
the whole period, which corresponds to a point-sampling
of the index curve. Thus the yield distribution for large
Θ is closer and closer to the price distribution itself (ex-
pressed in units of the initial value), as it is apparent in
Figure 3b.

The origin of the log-normal distribution is clear. The
total yield after N transactions can be considered as a
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Fig. 4. The same as Figure 3a, but for the flipped time series.

product of random variables

y = ξ1ξ2 . . . ξN , (4)

where ξi = (xi − xi−1)/xi, and the average time between
the ith and the preceding (i − 1)th transactions is Θ/2.
The logarithm of y is the finite sum

ln(y) = ln(ξ1) + ln(ξ2) + . . .+ ln(ξN ). (5)

If N is large enough, ξi are independent, and each of them
can be characterized by an identical probability distribu-
tion of finite first and second moments, the limit distri-
bution for ln(y) converges to a Gaussian according to the
central limit theorem. Several statistical analysis of stock
prices concluded that price changes have very short time
correlations [1,2,23]. Thus the total yield for a series of
sufficiently separated transactions can be considered as a
product of independent stochastic variables, therefore the
probability distribution should converge to a log-normal
distribution.

It is obvious that the statistics of price changes deter-
mine primarily the total yield. In reference [23] the cumu-
lative distribution functions for the return are evaluated
for different time lags, the difference between negative and
positive changes is apparent, but not very informative.
The distribution for fixed step returns can not be directly
related to our “gambling test”, since here the interval be-
tween the consecutive transactions is a random variable
itself. In order to check the effect of the asymmetry in
the price-change distribution, one can change the role of
negative and positive jumps by flipping the original time
series around the horizontal axis determined by the first
and last values. (Note that in this case the trend shown in
Figure 1a is transformed to be positive, however the price
change distribution is simply flipped around the vertical
axis.) The result is shown in Figure 4. The limit distribu-
tion is wider, the fitted parameters arem = −0.004±0.002
and σy = 0.42 ± 0.02. This means an average yield of
〈y〉 ≈ 1.08 ± 0.013, which is almost the same as in the
original case. We can conclude from this result that the
asymmetry in the price change distribution affects pri-
marily the width of the limit distribution, but the 50%
chance for win or loss remains the same. Note that the
larger width increases the proportion of lucky gamblers of
more than 100% profit to be roughly 3.5%.
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Fig. 5. (a) Daily values of the Dow Jones Industrial Average
from 2 January 1901 to 24 April 1998 (the vertical scale is
logarithmic). (b) Probability distribution of the total yield for
random traders at three different activity parameters Θ (mea-
sured in units of days). The vertical dotted line corresponds to
the yield of no trading at all, i.e. the final value of 100 pack-
ets. Thin solid line indicate a power-law tail with an exponent
−3.2± 0.2.

The pure log-normal limit distribution is characteris-
tic at weak overall trends only. As an example, we show
the result for similar gambling tests for the famous Dow
Jones daily series plotted in Figure 5a. The limit distri-
bution does not depend on the activity parameter again,
but the shape is not log-normal any more. It is remark-
able that random trading is a very bad “strategy” at a
strong increasing trend, a negligible minority earns more
than the investors “sitting” on their stocks.

3 The effect of transaction costs

Up to this point we can conclude that active gambling
might result in a positive yield. The limit distribution
is insensitive to the trading activity parameter Θ in a
wide range, which indicates the lack of correlations be-
tween price changes. It is obvious, however, that transac-
tion costs affect strongly the total yield.

In Figure 6 we show the limit distributions for differ-
ent activity parameters by taking into account 1% trans-
action cost, which is an average for small investors at the
Hungarian trading agencies. The width of the parabolas
on the double logarithmic plot is almost the same for each
case, however their center shifts drastically to smaller val-
ues at a high activity. In Figure 7 the average yields are
plotted as a function of average number n of transactions
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Fig. 6. The effect of 1% transaction cost on the limit distri-
bution for different activity parameters Θ. (Note the double
logarithmic scale.)
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Fig. 7. The average yield as a function of average number of
transactions per trading week. The solid line shows an expo-
nential fit.

per trading week (the transformation fromΘ is trivial). As
expected, the average values decrease exponentially with
the increasing trading activity, the empirical fit shown as
solid line is 〈y〉 = 1.01 exp(−0.8n).

It is clear from this curve that e.g. “day-trading” is
a gamble for members of the stock market, who benefit
from almost zero transaction costs. Nevertheless the limit
distribution for Θ = 50 000, which represents roughly one
transaction a month, is not very far from the cost-less limit
distribution for random day-traders.

4 How to win

Let us show next the statistics of the luckiest gamblers.
The question we pose: Is there any apparent pattern in
the activity leading to large wins? As a representative ex-
ample, we show the results for a mild activity Θ = 50 000.
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Fig. 8. The time of selling (a) and buying (c) for the 671
gamblers who won more than 100% of the initial capital
(Θ = 50 000). The vertical axis show the serial number of the
gamblers. (b) is the same as Figure 1a.

(No transaction costs considered.) The best 671 of 50 000
gamblers doubled the initial capital, they are identified
simply by a serial number from 1 to 671. We plotted in
Figure 8a the time instants when they sold the packages,
in Figure 8c when they bought stocks. (Fig. 8b shows the
time series of the BUX.) The first observation is that some
stripes are apparent close to local maxima (Fig. 8a) and
local minima (Fig. 8c) of the time series. This is in agree-
ment with the golden rule: “Sell when it is expensive and
buy when it is cheap.” Nevertheless the patterns are not
strongly located, there is a pronounced trading activity
all along the time axis. One interpretation for the success
of distributed trading activities might be that there are
a few crucial moves not to miss, and the other transac-
tions do not play an important role. In order to locate
the “golden” moves, we generated a much larger sample,
namely 5× 107 trajectories for Θ = 50 000 (which means
roughly 8-12 transactions in the whole period). The cri-
terium of superiority was sharpened too, activities of the
3 gamblers getting 400% of the initial investment were
evaluated only. No unique pattern was found.

As for the distribution of the extreme values, we eval-
uated the maximal and minimal total yields for 103 dif-
ferent realizations of finite assemblies of 5× 104 gamblers
at different activity parameters Θ. The result for maxi-
mal values is shown in Figure 9. All the curves can be
satisfactorily fitted by the so called Gumbel-I distribution
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Fig. 9. Logarithm of normalized probability density distribu-
tions for the maximal yield ymax for 1 000 different samples
of 50 000 random traders. Thin solid lines show the fits by
equation (6) for different Θ values.

originally identified by Fisher and Tippett [24]:

P (ymax) = K
(

ez−ez
)
, (6)

where z = −b(ymax − c). The most probable value c for
the given sample size apparently depends on the activity
parameter Θ, actually the change 3.0 < c(Θ) < 3.7 (not
shown here) is nonmonotous with a local maximum at
around Θ = 104 and a local minimum at Θ ≈ 3× 104. No
similar dependence for the minimal values ymin was found.

5 Minimal strategy

It is obvious that moves of investors are not indepen-
dent from the time-evolution of price history and many
other factors contributing to the expectations. The sim-
plest possible strategy is probably a finite threshold profit-
realization with the following rules:

1. The investor follows the time evolution of the index,
and sells the stocks when the profit exceeds a given
threshold k%. (E.g. k = 5% means a total yield of
y = 1.05 after the first transaction.)

2. Having a cash-position, the investor buys stocks when-
ever their possible number exceeds the last value in the
previous stock-position.

These rules are fully deterministic, thus a statistical eval-
uation of such a strategy is not feasible. Furthermore a
direct application of them is not “realistic” at all, because
nobody can follow the changes and perform transactions
with the given time-resolution (5 seconds!). Therefore we
keep randomizing with the activity parameter Θ for both
steps above, in order to simulate limited information ac-
cess, random decision making, and similar probabilistic
factors. Note that the number of ways for defining strate-
gies is unlimited, but the introduction of further thresh-
olds, algorithmic treatment of technical patterns, etc.,
raises the set of model parameters.
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Fig. 10. Normalized limit distribution of the total yield y
for the minimal strategy gamble described in the text for
1.5 × 105 samples each. Left column: The activity parameter
is fixed (Θ = 1 000), five different selling thresholds are shown.
Right column: The threshold is fixed (k = 5%), Θ is chang-
ing. Note the different vertical scales. Dotted line indicates the
log-normal distribution for fully random trading.

This simple two-parameter gamble increases the com-
plexity of the limit distributions for total yield y, as it
is illustrated in Figure 10. Some trends are clearly visible:
The higher the threshold k at a fixed activity parameter Θ
the narrower the distribution (Fig. 10 left column), while a
decreasing trading activity (larger Θ) at a fixed threshold
k increases the width of the peaks (Fig. 10 right column).
It is also clear that such a profit realization strategy can
not lead to a total yield smaller than 1 at the particu-
lar choice of the trading interval (the final index value is
identical with the initial one).

The shape of the probability density distributions
changes also strongly at different parameter pairs, there-
fore its characterization with a couple of numbers is
difficult. Nevertheless we attempted to evaluate the
model-parameter space by calculating the average value,
width, and extremes as a function of Θ and k. A repre-
sentative result for the average total yield 〈y〉 is shown
in Figure 11. The strongly irregular surface partly reflects
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Fig. 11. Average yield as a function of model parameters Θ
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Θ-axis.

the change of shape of the underlying distribution (see
Fig. 10). This surface is far from being a plane, never-
theless there is a global increasing (logarithmic) trend
at decreasing activities for a rather wide threshold range
1% < k < 10%. Similarly to the fully random case, very
high trading activity results in definitely smaller average
yields than a moderate behavior.

As for the transaction cost, the effect is similar to the
fully random case discussed above with only one excep-
tion. Namely, Rule 2 means in this case that an agent can
buy stocks if the amount of cash covers also the transac-
tion cost. Thus the lower limit of total yield at the end
is 1. At small Θ values (high activity) the distributions
shown in Figure 10 sharpen further around average values
1.07-1.15, low activity (Θ > 20 000) has a small effect on
them.

6 Discussion

Unfortunately we do not have access to real data on the
yields of individual investors, thus a direct comparison
with our simulations is not possible. However, we can show
the data for 32 public investment funds being active in the
same period (Fig. 12), since their yield is published regu-
larly. (Note that these data are not corrected with infla-
tion, similarly to our treatment.) Although the statistics
is very poor, we found that the histogram is most simi-
lar to the distribution of index values (expressed in the
initial price) itself. As Figure 3b shows, this yield distri-
bution is characteristic for fully random trading at quite
low activities (large Θ values).

We do not want to overemphasize the observed sim-
ilarity, especially because these funds invest not only in
stocks, in fact some of them trade only bonds. How-
ever, the evolution of Hungarian bond prices undoubtedly
interacts with the BUX index. Further, the total capi-
tal treated by the Hungarian public funds is very low
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Fig. 12. Empirical histogram of the total yield for 32 public
investment funds in the given period (gray bars). The solid line
is the (unnormalized) index distribution for the same period
shown also in Figure 3b.

compared to the large institutional investors and multi-
national companies, thus the assumption that their small
volume transactions can not change drastically the prices,
should be close to the reality. The indication of low trad-
ing activity coincides with the expectation, since these
funds obey a careful investment strategy (according to
their claims) without risky, e.g. day-trading transactions.
Nevertheless the similarity of the histograms in Figure 12
does not indicate the presence of any sophisticated invest-
ment strategy for the public funds.

The author thanks Imre Kondor, Dietrich Stauffer, and
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